ECE 344

MICROWAVE FUNDAMENTALS PART1-Lecture 7

Dr. Gehan Sami

Standing Wave Ratio

Impedance/Admittance smith chart

You will learn

- Locate impedance on smith chart read corresponding admittance and vise versa, read Γ load, move along TL read corresponding $\Gamma \mathrm{in}, \mathrm{Zin}$, VSWR, Imin, lmax
- Quarter wave transformation
- Adding elements (series-shunt) to load impedance on Smith chart
- Find input impedance to an arbitrary circuit (may contain series, shunt, TL connections)

Impedance (Z) Chart

$$
\begin{aligned}
& Z(-\ell)=Z_{0}\left(\frac{1+\Gamma}{1-\Gamma}\right) \Gamma=\Gamma(-\ell) \\
& Z_{n}(-\ell) \equiv \frac{Z(-\ell)}{Z_{0}}=\left(\frac{1+\Gamma}{1-\Gamma}\right)
\end{aligned}
$$

Define

$$
Z_{n}=R_{n}+j X_{n} ; \quad \Gamma=\Gamma_{R}+j \Gamma_{I}
$$

Substitute into above expression for $Z_{n}(-\ell)$:

$$
R_{n}+j X_{n}=\left(\frac{1+\left(\Gamma_{R}+j \Gamma_{I}\right)}{1-\left(\Gamma_{R}+j \Gamma_{I}\right)}\right)
$$

Next, multiply both sides by the RHS denominator term and equate real and imaginary parts. Then solve the resulting equations for Γ_{R} and Γ_{I} in terms of R_{n} and X_{n}. This gives two equations.

Impedance (Z) Chart (cont.)

1) Equation \#1:

$$
\left(\Gamma_{R}-\frac{R_{\mathrm{L}}}{1+R_{\mathrm{L}}}\right)^{2}+\Gamma_{I}^{2}=\left(\frac{1}{1+R_{\mathrm{L}}}\right)^{2}
$$

$$
\text { center }=\left(\frac{R_{\llcorner }}{1+R_{\mathrm{L}}}, 0\right)
$$

Transforming " r "

$$
\text { radius }=\frac{1}{1+R_{\mathrm{L}}}
$$

\mathbf{r}	Radius	Center
0	1	$(0,0)$
$1 / 2$	$2 / 3$	$(1 / 3,0)$
1	$1 / 2$	$(1 / 2,0)$
2	$1 / 3$	$(2 / 3,0)$
∞	0	$(1,0)$

Impedance (Z) Chart (cont.)

2) Equation \#2:

$$
\left(\Gamma_{R}-1\right)^{2}+\left(\Gamma_{I}-\frac{1}{X_{n}}\right)^{2}=\left(\frac{1}{X_{n}}\right)^{2}
$$ center $=\left(1, \frac{1}{X_{n}}\right)$

radius $=\frac{1}{\left|X_{n}\right|}$

Transforming " x "

| \mathbf{x} | Radius | Center |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | ∞ | $(1, \infty)$ |
| 0.5 | 2 | $(1,2)$ |
| 1 | 1 | $(1,1)$ |
| \mathbf{x} | Radius | Center |
| 0 | ∞ | $(1,-\infty)$ |
| 2 | 0.5 | $(1,0.5)$ |
| ∞ | 0 | $(1,0)$ |
| -0.5 | 2 | $(1,-2)$ |
| -1 | 1 | $(1,-1)$ |
| -2 | 0.5 | $(1,-0.5)$ |
| $-\infty$ | 0 | $(1,0)$ |

Impedance Smith Chart

Smith Chart - Imaginary Circles

Smith Chart - Real Circles

Impedance (Z) Chart (cont.)

Important Points:

- Short Circuit
$\Gamma=-1, z=0$
- Open Circuit
$\Gamma=1, z \rightarrow \infty$
- Matched Load
$\Gamma=0, z=1$
- The circle $|\Gamma|=1$ describes a lossless element (C or L)

Complex Г Plane

Example 1

Move along TL from

e.g. $Z_{L}=50+j 25 \Omega$

All 50Ω, constant ρ
$Z_{\text {in }}=50(1.65+j 0.1) \Omega$
$\Gamma_{\text {in }}=0.24\left(4^{\circ}\right)$

$$
1.65+j .07=1.65+j 0.1
$$

$$
\begin{aligned}
& z_{l}=1.5+j 1.5 \\
& z_{\text {in }}=0.65-j \\
& \beta l=\frac{2 \pi}{\lambda}(0.36-0.194) \lambda \\
& \beta l=2 \pi \times 0.166=59.76=60^{\circ}
\end{aligned}
$$

By Equations:-

$$
\begin{aligned}
& \text { for } z_{C}=1.5+j 1.5 \rightarrow \Gamma_{L}=\frac{z_{1}-1}{z_{1}+1}=0.54<40.6 \\
& \text { for } z_{\text {in }}=0.65-j \rightarrow \Gamma_{\text {in }}=0.54-78 \\
&=1_{L} 1 \varphi \varphi-2 \beta l \\
& \therefore \quad 40.6-2 \beta l=-78 \\
& \beta l=\frac{78+40.6}{2}=59.3=60^{\circ}
\end{aligned}
$$

Example 3(2.2 in the book)
$\mathrm{Z}_{0}=100, \mathrm{z}_{\mathrm{L}}=0.4+\mathrm{j} 0.7$
(Zl=40+j70)
$1=.3 \lambda$
Find $\Gamma_{\mathrm{L}}, \Gamma(-l), \mathrm{Zin}$, SWR, Return loss

From smith chart
We can find:
From reflection coefficient E scale $\left|\Gamma_{\mathrm{L}}\right|=.59 . \theta=104^{\circ}$
From SWR :
SWR=3.8
From return Scale, return loss=4.6dB ,$\Gamma(-l)=.59 \iota^{-}$

