

ECE 344

MICROWAVE FUNDAMENTALS PART1-Lecture 7

Dr. Gehan Sami

Many Slides from: ECE 5317_6351 Microwave Engineering Prof. David R. Jackson

Impedance/Admittance smith chart

You will learn

- Locate impedance on smith chart read corresponding admittance and vise versa, read Γload, move along TL read corresponding Γin, Zin, VSWR, lmin, lmax
- Quarter wave transformation
- Adding elements (series-shunt) to load impedance on Smith chart
- Find input impedance to an arbitrary circuit (may contain series, shunt, TL connections)

Impedance (Z) Chart

$$Z(-\ell) = Z_0\left(\frac{1+\Gamma}{1-\Gamma}\right) \qquad \Gamma = \Gamma(-\ell)$$

$$Z_n(-\ell) \equiv \frac{Z(-\ell)}{Z_0} = \left(\frac{1+\Gamma}{1-\Gamma}\right)$$

Define

 $Z_n = R_n + jX_n$; $\Gamma = \Gamma_R + j\Gamma_I$

Substitute into above expression for $Z_n(-\ell)$:

$$\boldsymbol{R}_{n} + \boldsymbol{j}\boldsymbol{X}_{n} = \left(\frac{1 + \left(\boldsymbol{\Gamma}_{R} + \boldsymbol{j}\boldsymbol{\Gamma}_{I}\right)}{1 - \left(\boldsymbol{\Gamma}_{R} + \boldsymbol{j}\boldsymbol{\Gamma}_{I}\right)}\right)$$

Next, multiply both sides by the RHS denominator term and equate real and imaginary parts. Then solve the resulting equations for Γ_R and Γ_I in terms of R_n and X_n . This gives two equations.

Impedance (Z) Chart (cont.)

Transforming "r"

r	Radius	Center			
0	1	(0,0)			
1/2	2/3	(1/3,0)			
1	1/2	(1/2,0)			
2	1/3	(2/3,0)			
80	0	(1,0)			

Impedance (Z) Chart (cont.)

2) Equation #2:

$$\left(\Gamma_R - 1\right)^2 + \left(\Gamma_I - \frac{1}{X_n}\right)^2 = \left(\frac{1}{X_n}\right)^2$$

center = $\left(1, \frac{1}{X_n}\right)$ rad

adius
$$= \frac{1}{|X_n|}$$

Transforming "x"

x	Radius	Center	x	Radius	Center
0	8	(1,∞)	0	~	(1,-∞)
0.5	2	(1,2)	-0.5	2	(1,-2)
1	1	(1,1)	-1	1	(1,-1)
2	0.5	(1,0.5)	-2	0.5	(1,-0.5)
8	0	(1,0)	-00	0	(1,0)

Impedance Smith Chart

Smith Chart – Real Circles

Impedance (Z) Chart (cont.)

 Γ plane

Important Points:

- Short Circuit $\Gamma = -1, z = 0$
- **Open Circuit** ٠ $\Gamma = 1, Z \rightarrow \infty$
- Matched Load ٠ $\Gamma = 0, z = 1$

٠

Complex Γ Plane

